Перейти на стартовую страницу
2021-01-20 07:07:00 /РИА "Сибирь" /Томск
Томские ученые научили искусственный интеллект выявлять риски на промобъектахх




Учёные Томского госуниверситета разработали прототип системы анализа технологических данных, позволяющий предотвращать аварийные ситуации на предприятиях. Автоматический анализ осуществляет математическая модель, которую с помощью машинного обучения научили распознавать штатное и аномальное поведение в технологических сигналах. Проект выполнен при поддержке Российского фонда фундаментальных исследований и научного фонда ТГУ имени Д. И. Менделеева.

"На крупных производствах используются десятки и сотни единиц технологического оборудования. Для каждой из них отслеживаются технологические показатели, которые свидетельствуют о состоянии оборудования - это давление, температура, вибрация и другие, - говорит один из авторов проекта, аспирант ТГУ Дамир Мурзагулов. – Дефекты и отказы проявляются в этих технологических параметрах различным образом, и не всегда стандартная автоматика или человек могут обратить на это внимание. Переход промышленности на "цифру" позволяет накапливать эти данные, а их анализ - выявлять аномалии, которые свидетельствуют о начале сбоев в системе и могут быть предвестниками её выхода из строя".

Своевременная фиксация таких аномалий и превентивные меры в виде профилактики или планового ремонта оборудования помогут предотвратить его поломку и избежать простоя и серьёзных экономических потерь. В настоящее время над конструированием подобных систем работают ведущие компании мира, в частности, Siemens, Yokogawa, Schneider Electric.

Одной из задач проекта было создание наборов реальных и модельных данных, включающих образцы технологических сигналов - примеров нормы и аномалии. Информация для формирования набора была предоставлена предприятиями - индустриальными партнёрами ТГУ.

"Прототип находит любые нетипичные фрагменты, - объясняет Дамир Мурзагулов. - Например, математическая модель фиксирует резкие всплески амплитуды сигнала, это характерно для электрических показателей - ток, напряжение; изменение частоты, например, возникновение дополнительной вибрации при наличии механических дефектов на подшипниках; «замирание» измерительных средств, при которых значения сигнала не меняются долгое время, и другое.

При нахождении отклонения от нормы в графическом интерфейсе пользователя появляется уведомление о том, что обнаружен аномальный фрагмент сигнала. Далее оператор решает, что с ним делать. В случае, когда он уверен, что угрозы нет, он помечает этот фрагмент как штатный, и далее система уже запоминает и при следующем появлении идентифицирует это как штатную ситуацию. Таким образом, в процессе работы происходит дальнейшее обучение модели. Чем больше информации ИИ получает, тем опытнее и точнее он становится.

 

Источник: http://www.tsu.ru/