сегодня: 17.10.2021

[сделать стартовой]

Рубрики
Общество
Экономика
Политика
Спорт
Наука
Культура
Образование
Здравоохранение
Информационные технологии
Силовые структуры
Криминал
Происшествия
Экология
Недвижимость
Нск-риэлт
Байкал
Национальные проекты
Лес - богатство Сибири
Нефть и газ Сибири
Сибирский уголь
Научно-технический прогресс
Сибиряки
Мир вокруг нас
Интервью
Актуально

Сибирский федеральный округ
Наука и жизнь

Луна образовалась в результате ядерного взрыва


Видеокамеры для "супермена"


"Конец света" в прямом смысле слова


Земные океаны и атмосфера появились благодаря метеоритной бомбардировке


Солнце на Земле


Искусственный интеллект совсем рядом



ТОП-20 инженерных чудес света



Четвероногий друг


Новости Байкала

2019-07-22 14:40:00 /РИА "Сибирь" /Новосибирск

Новосибирские физики предсказывают необычное поведение электронов в графене



Материал
будущего



Графен - это материал, который популярен благодаря своим уникальным электрическим, механическим и оптическим свойствам, а также уникальной теплопроводности. В будущем, возможно, графен получит широкое распространение в области наноэлектроники. С ним учёные надеются создать энергоэффективные процессоры, способные обрабатывать больший объем данных при меньшем нагреве.

Сотрудники теоретического отдела Института ядерной физики имени Г. И. Будкера СО РАН при изучении электрон-электронного взаимодействия в графене обнаружили весьма необычные свойства этого процесса, которые могут пролить свет на некоторые из свойств графена. Результаты
 опубликованы в журналах Physica E: Low-dimensional Systems and Nanostructures и Physical Review B.

Графен - двумерный материал, состоящий из атомов углерода, уложенных в шестиугольную решетку. Если посмотреть на грифель карандаша под мощным микроскопом, то можно увидеть, что он имеет слоистую структуру, где каждый слой и есть графен. Хотя теоретические исследования свойств этого материала начались еще в 1947 году, синтезировать графен для экспериментальных исследований долгое время не получалось, поскольку двумерный кристалл в трехмерном пространстве нестабилен.

Получить графен удалось лишь в 2004 году. После синтеза этого материала началось интенсивное изучение его свойств, например, было показано, что графен обладает уникальной электрической проводимостью, а движение носителей заряда напоминает движение релятивистских частиц. Кроме того, материал обладает уникальной теплопроводностью и прочностью. За работы по созданию и изучению графена в 2010 году была присуждена Нобелевская премия. 

Для того, чтобы разобраться со свойствами графена и определить его место в прикладных областях науки и техники, необходимы как экспериментальные, так и теоретические исследования материала. Для понимания высокой проводимости требуется исследовать множество эффектов, таких как взаимодействие носителей заряда с примесями, с фононами (квазичастицами, описывающими колебания решетки) и между собой. Этими носителями заряда являются не обычные электроны, а конгломерат электронов, вовлечённых в движение благодаря взаимодействию между собой и с ионами кристаллической решётки. Этот конгломерат электронов (заряженная квазичастица) при учёте зарядов ионов, имеет электрический заряд, равный заряду электрона, но совершенно другую, по сравнению со свободным электроном, зависимость энергии от импульса (то есть спектр). Вблизи нулевого импульса эта зависимость является линейной, то есть напоминает спектр частиц, движущихся со скоростью, близкой к скорости света.

"Высокая электрическая проводимость графена, которая и делает его перспективным для применения в наноэлектронике, определяется тем, что спектр заряженных квазичастиц в графене существенно отличается от их спектра в металлах и полупроводниках, - рассказывает старший научный сотрудник Института ядерной физики СО РАН Иван Терехов. - Чтобы продвинуться в понимании свойств графена, мы сосредоточились на изучении взаимодействия носителей заряда в графене. При абсолютном нуле температуры заряженные квазичастицы занимают все состояния с энергиями ниже некоторой. Эта максимальная энергия называется энергией Ферми. Представим себе, что мы добавили ещё две квазичастицы выше энергии Ферми. Наши результаты показали, что взаимодействие этих квазичастиц между собой зависит от разницы между их энергией и энергией Ферми".

Существенная разница между взаимодействием двух свободных электронов и двух квазичастиц состоит в том, что два свободных электрона отталкиваются, а между двумя квазичастицами может возникать эффективное притяжение и даже образование локализованного состояния, своего рода атома, состоящего из двух электрически одинаково заряженных квазичастиц.

"Можно выделить два типа этих локализованных состояний. В первом случае локализованное состояние проявляет себя в виде долгоживущего резонанса, возникающего в процессе рассеяния одной квазичастицы на другой, – поясняет заведующий теоретическим отделом Института ядерной физики, доктор физико-математических наук Александр Мильштейн. - Время жизни этого резонанса определяется разностью между энергией квазичастиц и энергией Ферми: чем больше эта разница – тем больше время жизни. Во втором случае время жизни локализованного состояния формально является бесконечным, но это состояние нельзя получить в процессе рассеяния, то есть требуется другой метод его рождения".

Таким образом, теоретические результаты сотрудников Института ядерной физики СО РАН, направленные на изучение поведения электронов в графене, могут не только пролить свет на понимание необычных свойств графена, но и открывают широкие возможности для экспериментального изучения необычных явлений, происходящих в этом материале, отметила руководитель пресс-службы ИЯФ СО РАН Алла Сковородина.



Cмотрите также:  Наука  Новосибирская область
Архив
пн вт ср чт пт сб вск
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 
Поиск по сайту
Что? Где? Когда?
****

25-27 октября в Томске пройдет II конференция "Водород. Технологии. Будущее""

*****

10-15 ноября 2021 года в Омске пройдет театральный фестиваль "Достоевский. Омск"

*******

16 октября 2021 года в Красноярске стартует фестиваль Дмитрия Хворостовского

*****
Сохраним Байкал!

Экологический кризис на Байкале: новый эпизод с сине-зелеными водорослями
Все о клещах

Новосибирские ученые: как уберечься от заболеваний, переносимых клещами

Планета Земля

2036 год: Апофеоз или Апокалипсис?


Катастрофы: возможность или неизбежность
Реклама

Универсальная вебкамера за 1190 рублей, функция автоматической записи
*******
О проекте Контакты Партнеры  
Rambler's Top100
Copyright © 2004-2021 РИА "Сибирь"
E-mail: rian@cn.ru
Телефон: 8(383) 214-20-12