сегодня: 09.08.2020

[сделать стартовой]

Рубрики
Общество
Экономика
Политика
Спорт
Наука
Культура
Образование
Здравоохранение
Информационные технологии
Силовые структуры
Криминал
Происшествия
Экология
Недвижимость
Нск-риэлт
Байкал
Национальные проекты
Лес - богатство Сибири
Нефть и газ Сибири
Сибирский уголь
Научно-технический прогресс
Сибиряки
Мир вокруг нас
Интервью
Актуально

Сибирский федеральный округ
Наука и жизнь

Луна образовалась в результате ядерного взрыва


Видеокамеры для "супермена"


"Конец света" в прямом смысле слова


Земные океаны и атмосфера появились благодаря метеоритной бомбардировке


Солнце на Земле


Искусственный интеллект совсем рядом



ТОП-20 инженерных чудес света



Четвероногий друг


Новости Байкала

2019-09-13 17:06:00 /РИА "Сибирь" /Новосибирск

Новосибирскими учеными найден способ безопасной перевозки радиоактивных отходов





Современные технологии требуют новых материалов, все более усовершенствованных, мультифункциональных, с теми или иными ярко выраженными свойствами.

Специалисты Института химии твердого тела и механохимии СО РАН, Института ядерной физики имени Г. И. Будкера СО РАН занимаются разработкой высокотемпературных композиционных материалов из боридов вольфрама и молибдена для атомной энергетики - для контейнеров, транспортирующих радиоактивные отходы. Задача исследователей - создание материала, который одновременно будет ослаблять гамма- и нейтронное излучения, выдерживать высокие температуры и обладать достаточными прочностными характеристиками. Полученные образцы материала можно наносить на поверхность напыления. Результаты опубликованы в журнале "Известия РАН".

Сегодня многим отраслям промышленности, наукоемким производствам требуются материалы, обладающие новыми качественными характеристиками, комбинирующие в себе несколько свойств - повышенную прочность, высокую теплопроводность, термостойкость и др. Именно поэтому развитию технологий создания новых материалов уделяется повышенное внимание. Композиционные, полимерные, наноуглеродные материалы и керамика с высокими качественными характеристиками могут дать сильный импульс развития промышленности, медицины, сфере информационных технологий и многим другим областям, напрямую влияющим на качество жизни человека.

Например, в атомной энергетике в связи с увеличением количества радиоактивных отходов, которые образуются в результате переработки отработанного ядерного топлива, остро встала проблема модернизации контейнеров для их транспортировки и хранения. Защитное покрытие контейнеров должно ослаблять поток гамма- и нейтронного излучений, при этом выдерживать высокие температуры и обладать высокими прочностными характеристиками. Атомной промышленности необходимы материалы, которые соединяли бы в себе лучшие свойства металлов и самых тугоплавких соединений - оксидов, карбидов, боридов.

Над этой задачей работают специалисты Института химии твердого тела и механохимии и Института ядерной физики. В их арсенале - аддитивные технологии и специализированный источник электронного пучка.

"Материал защитного покрытия должен ослаблять поток альфа-, бета-, гамма- и нейтронного излучений. Для этой цели хорошо подходят бориды тяжелых металлов, например, вольфрама, - рассказывает научный сотрудник Института химии твердого тела и механохимии, кандидат химических наук Алексей Анчаров. - Атомы металла поглощают альфа-, бета- и гамма-излучения, а атомы бора - нейтроны. Кроме этих свойств, бориды обладают высокой температурой плавления и высокой твердостью. Задача нашего исследования состояла в том, чтобы научиться комбинировать необходимые свойства в одном материале. Аддитивные технологии здесь очень подходят – они позволяют наращивать слои материалов с различными концентрациями, или добавлять новые слои с другими компонентами и обеспечивать градиент физико-химических характеристик по толщине образца".

Для предварительной подготовки образцов специалисты использовали метод механоактивации. В шаровой мельнице - специальном устройстве для смешивания и измельчения твердых веществ до микроразмеров – вольфрам и нитрид бора «вбиваются» друг в друга. Под электронным микроскопом получившийся механокомпозит выглядит как "слоеный пирог". Далее его исследуют в Сибирском центре синхротронного и терагерцового излучения Института ядерной физики на экспериментальной станции "Дифрактометрия в жестком рентгеновском диапазоне" при помощи синхротронного излучения, генерируемого ускорителем ВЭПП-3. Третий, завершающий, этап приготовления – нагревание смеси и запуск химических реакций направленным пучком электронов на специализированном источнике электронного пучка в Институте ядерной физики.

"Источник электронного пучка разработан и изготовлен специально для электронно-лучевых технологий. Он обладает редкими параметрами: энергией 60 киловольт при непрерывной мощности до 30 киловатт, – рассказывает научный сотрудник Института ядерной физики Юрий Семенов. - При фокусировке электронного пучка меньше одного миллиметра в диаметре, мы получаем мощность около 100 киловатт на квадратный миллиметр. Мощность преобразуется в тепло в обрабатываемом слое толщиной десяток микрометров, где температура может достигать отметки 6000 °C и выше. Такие характеристики позволяют нам плавить самые тугоплавкие материалы. Но самая важная особенность нашей установки в том, что электронный пучок направляется на обрабатываемую поверхность не прямолинейно, а с поворотом на 270 градусов. Такое решение позволяет нам защитить катод и высоковольтную область электронной пушки от паров и мелких капель от обрабатываемого материала. Данная технология запатентована нами в России".

Специалистам удалось достаточно просто и с малыми энергозатратами получить композиты из разных боридов, управлять процессом синтеза. В будущем, меняя соотношение состава (стехиометрию), можно регулировать ослабление того или иного вида излучения. Композиционные материалы, где в составе больше вольфрама, будут лучше поглощать гамма-излучение, где больше бора – нейтронное излучение.

Алексей Анчаров отметил, что разрабатываемая технология позволит делать как большие, так и маленькие детали, причем любой формы. Более того, если оборудовать электронную пушку специальным соплом, из которого выдувается порошок, то попадая в зону нагрева, он будет наплавляться на поверхность. Технология наплавления схожа с принципом работы краскопульта: защитный слой просто напыляется на уже существующее изделие, например, стенки контейнеров для перевозки и хранения радиоактивных отходов, сообщила руководитель пресс-службы ИЯФ СО РАН Алла Сковородина



Cмотрите также:  Наука  Новосибирская область
Архив
пн вт ср чт пт сб вск
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 
Поиск по сайту
Что? Где? Когда?
**** *****

24-28 сентября 2020 года в Иркутске пройдет кинофестиваль "Человек и природа"

******

С 5 по 11 октября 2020 года в Иркутске пройдёт чемпионат мира по хоккею с мячом

******
Сохраним Байкал!

Экологический кризис на Байкале: новый эпизод с сине-зелеными водорослями
Все о клещах

Новосибирские ученые: как уберечься от заболеваний, переносимых клещами

Планета Земля

2036 год: Апофеоз или Апокалипсис?


Катастрофы: возможность или неизбежность
Реклама

Универсальная вебкамера за 1190 рублей, функция автоматической записи
*******
О проекте Контакты Партнеры  
Rambler's Top100
Copyright © 2004-2020 РИА "Сибирь"
E-mail: rian@cn.ru
Телефон: 8(383) 214-20-12