сегодня: 11.08.2020

[сделать стартовой]

Рубрики
Общество
Экономика
Политика
Спорт
Наука
Культура
Образование
Здравоохранение
Информационные технологии
Силовые структуры
Криминал
Происшествия
Экология
Недвижимость
Нск-риэлт
Байкал
Национальные проекты
Лес - богатство Сибири
Нефть и газ Сибири
Сибирский уголь
Научно-технический прогресс
Сибиряки
Мир вокруг нас
Интервью
Актуально

Сибирский федеральный округ
Наука и жизнь

Луна образовалась в результате ядерного взрыва


Видеокамеры для "супермена"


"Конец света" в прямом смысле слова


Земные океаны и атмосфера появились благодаря метеоритной бомбардировке


Солнце на Земле


Искусственный интеллект совсем рядом



ТОП-20 инженерных чудес света



Четвероногий друг


Новости Байкала

2020-03-28 14:34:00 /РИА "Сибирь" /Новосибирск

В Новосибирске ученые исследовали поведение электронов мышьяка в полупроводнике





Ученые и специалисты Института ядерной физики имени Г. И. Будкера СО РАН (Новосибирск) и Института физики микроструктур РАН (Нижегородская область) провели серию оптических исследований германия, легированного мышьяком (материал относится к классу полупроводников).

 

В ходе экспериментов на Новосибирском лазере на свободных электронах исследовалось поведение электронов мышьяка в полупроводнике: частицы возбуждались за счет воздействия терагерцового излучения лазера, а затем ученые фиксировали время их релаксации, то есть возвращения в основное состояние. В результате было установлено, что это время составляет 0.5-1.5 наносекунды. Подобные измерения в будущем могут помочь при создании компактных лазеров нового типа, а также одноатомных транзисторов, которые в будущем могут стать основой для наноэлектроники. Работа выполнена в рамках гранта Российского научного фондаНФ. Результаты опубликованы в издании "Письма в журнал экспериментальной и теоретической физики".

 

Полупроводники - это материалы, электрическая проводимость которых меняется в зависимости от внешних условий. Они занимают промежуточное положение между проводниками и диэлектриками. Структура таких материалов включает в себя несколько энергетических зон. Самую верхнюю из зон, заполненных электронами при температуре, равной абсолютному нулю, называют валентной зоной; первую из незаполненных электронами - зоной проводимости, а разделяет их запрещенная зона. В материалах, которые проводят электричество при любых условиях, эта зона фактически отсутствует, полупроводниками называют материалы с относительно небольшой запрещенной зоной, а в случае, если ее размер составляет более 4-5 эВ, материал считается диэлектриком.

 

Увеличения проводимости полупроводника можно добиться разными способами, один из них - добавление примесей или легирование. Существует два типа примесей: донорные - легко отдающие свободные электроны, и акцепторные - электроны принимающие. Мышьяк относится к числу донорных примесей. Для них важной характеристикой является энергия связи примеси – минимальная энергия, необходимая для отрыва электрона от донора и перехода в зону проводимости. Примеси встраиваются в кристаллическую решетку полупроводника и создают в запрещенной зоне дополнительные уровни энергии, на которых возбужденный электрон может находиться короткое время.

 

"После возбуждения электроны всегда возвращаются к равновесному состоянию, то есть релаксируют, измеряя и сравнивая времена релаксации можно построить схему наиболее вероятных маршрутов релаксации электронов, - рассказывает старший научный сотрудник Института физики микроструктур РАН, кандидат физико-математических наук Роман Жукавин. - Одной из изюминок полученных результатов стало то, что для мышьяка в германии в одном эксперименте получилось оценить время релаксации двух возбужденных уровней, когда излучение ЛСЭ переводило электроны с первого из них на второй, и возвращение к равновесию частично происходило за счет «подкачки» с основного уровня. В будущем это может помочь сделать вывод о возможности создания лазерной среды на основе германия с примесью мышьяка, кроме того, эти данные позволят понять возможные характеристики для одноатомного транзистора на основе донора в германии".

 

"Создать условия, при которых можно отследить процесс релаксации электронов в данном материале непросто, прежде всего, нужен специальный источник возбуждения с энергиями подходящими для этого материала, - рассказывает старший научный сотрудник Института ядерной физики СО РАН, кандидат физико-математических наук Юлия Чопорова. - Во-первых, терагерцовых лазеров на свободных электронах во всем мире не больше десяти. Во-вторых, на этом источнике необходима специальная пользовательская станция "накачка-зондирование" - таких в мире всего три, насколько мне известно. И, в-третьих, образец должен быть очень холодным (T=4К), иначе электроны примеси будут возбуждены за счет температурного нагрева - настолько маленькие энергии необходимо возбудить".

 

По словам Юлии Чопоровой, именно Новосибирский терагерцовый лазер дает возможность использовать его для работы с такими маленькими энергиями и временами. Лазер позволяет перестраивать длину волны излучения - это дает возможность подстроиться под конкретный возбужденный уровень электрона, а станция "накачка-зондирование" - измерять времена релаксации от 100 пикосекунд до 5 наносекунд.

 

Новосибирский лазер на свободных электронах - масштабная установка, построенная на базе специального ускорителя-рекуператора. Лазер терагерцового диапазона - это только первая очередь установки (запуск состоялся в 2003 году), которая работает на энергии 12 МэВ и длине волн от 240 до 90 мкм. Второй лазер, запущенный в 2009 году, использует электронные пучки с энергией 22 МэВ, а его излучение находится уже в инфракрасном диапазоне (длина волн составляет от 80 до 35 мкм). Третий лазер, запущенный в 2015 году, работает на энергии 42 МэВ в диапазоне от 5 до 15 мкм. Излучение всех лазеров выводится в один оптический канал - это дает возможность использовать его на одних и тех же станциях, однако наибольшей популярностью в настоящее время пользуется именно терагерцовый лазер. Каждый из трех лазеров позволяет менять длину волны и мощность излучения, в зависимости от пожелания пользователей - химиков, физиков и биологов.

 

Постоянно с лазером на свободных электронах работают научные группы из Института химической кинетики и горения имени В. В. Воеводского СО РАН и Института цитологии и генетики СО РАН (федерального исследовательского исследовательского центра), отметили в пресс-службе ИЯФ СО РАН.



Cмотрите также:  Наука  Новосибирская область
Архив
пн вт ср чт пт сб вск
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 
Поиск по сайту
Что? Где? Когда?
**** *****

24-28 сентября 2020 года в Иркутске пройдет кинофестиваль "Человек и природа"

******

С 5 по 11 октября 2020 года в Иркутске пройдёт чемпионат мира по хоккею с мячом

******
Сохраним Байкал!

Экологический кризис на Байкале: новый эпизод с сине-зелеными водорослями
Все о клещах

Новосибирские ученые: как уберечься от заболеваний, переносимых клещами

Планета Земля

2036 год: Апофеоз или Апокалипсис?


Катастрофы: возможность или неизбежность
Реклама

Универсальная вебкамера за 1190 рублей, функция автоматической записи
*******
О проекте Контакты Партнеры  
Rambler's Top100
Copyright © 2004-2020 РИА "Сибирь"
E-mail: rian@cn.ru
Телефон: 8(383) 214-20-12