сегодня: 05.08.2020

[сделать стартовой]

Рубрики
Общество
Экономика
Политика
Спорт
Наука
Культура
Образование
Здравоохранение
Информационные технологии
Силовые структуры
Криминал
Происшествия
Экология
Недвижимость
Нск-риэлт
Байкал
Национальные проекты
Лес - богатство Сибири
Нефть и газ Сибири
Сибирский уголь
Научно-технический прогресс
Сибиряки
Мир вокруг нас
Интервью
Актуально

Сибирский федеральный округ
Наука и жизнь

Луна образовалась в результате ядерного взрыва


Видеокамеры для "супермена"


"Конец света" в прямом смысле слова


Земные океаны и атмосфера появились благодаря метеоритной бомбардировке


Солнце на Земле


Искусственный интеллект совсем рядом



ТОП-20 инженерных чудес света



Четвероногий друг


Новости Байкала

2020-06-14 13:12:00 /РИА "Сибирь" /Новосибирск

Ученые в Новосибирске "захватили" одиночный атом рубидия в оптическую ловушку





Ученые Института физики полупроводников имени А. В. Ржанова СО РАН, Новосибирского госуниверситета и технического университета (НЭТИ) смогли удержать одиночный атом рубидия в оптическом пинцете в течение 40 секунд, а также зарегистрировать атом в ловушке с помощью значительно более дешевой, чем обычно используется для таких исследований, видеокамеры, применив для получения изображения длиннофокусный объектив. Детали эксперимента изложены в журнале "Квантовая электроника".

Одиночные атомы могут выступать в качестве кубитов - элементов для хранения и передачи информации в квантовых компьютерах. Считается, что последние позволят реализовывать ускоренные методы машинного обучения; рассчитывать поведение многокомпонентных систем, что даст возможность создавать новые материалы, тестировать лекарства на молекулярном уровне; быстро находить ключи к современным системам шифрования данных.

Удержание одного атома в оптическом пинцете или, как его еще называют, дипольной ловушке, первый шаг к созданию массива кубитов и проведению квантовых вычислений. Массив содержит множество атомов, каждый из которых удерживается "своим" оптическим пинцетом. Соответственно, нужно уметь не только захватывать атомы, но и корректно их регистрировать.

Электронные состояния холодных атомов могут существовать несколько секунд, это довольно долго в контексте квантовых вычислений, и поэтому такие атомы удобны для использования в качестве кубитов.

Работой с одиночными холодными атомами занимаются около 20 научных групп в мире, в России - только две: в Институте физики полупроводников СО РАН и в Московском государственном университете имени М. В. Ломоносова.

"Мы решали сложную проблему, состоящую из нескольких подзадач: во-первых, нужно охладить атомы (уменьшить их скорость), это делается при помощи лазерных пучков: поток фотонов из лазера поглощается атомами и их замедляет. Во-вторых, одиночный атом необходимо захватить в ловушку, которая представляет собой тоже лазерный пучок, но с очень острой фокусировкой (несколько микрон - таков характерный размер пятна, в котором удерживается атом). И в-третьих, чтобы сфотографировать атом, нужно за короткое время в сотню миллисекунд "зарегистрировать" инфракрасные фотоны, которые атом рассеивает, находясь в ловушке, примерно 1000 в секунду (это мало - бытовая видеокамера их не увидит и не почувствует). Условия нашего эксперимента требуют, чтобы захваченные атомы регистрировались за короткое время - тогда их можно будет использовать в качестве кубитов", - объясняет старший научный сотрудник Института физики полупроводников СО РАН, доцент кафедры оптических информационных технологий НГТУ-НЭТИ Илья Бетеров.

Зарубежные научные группы для таких регистраций используют высокочувствительные научные EMCCD-видеокамеры с электронным умножением, но они дороги - стоят около 5 млн рублей и к тому же в Россию не поставляются с 2015 года. Новосибирские физики работали с научной sCMOS-видеокамерой предыдущего поколения, более низкого класса и существенно более дешевой (она стоила около шестисот тысяч рублей).

Ученые смогли добиться впечатляющих результатов: достоверно зарегистрировали атом с минимальным временем экспозиции - 50 миллисекунд. Это типично для экспериментов, которые проводят исследователи во Франции, Германии, Корее и других странах, используя более совершенные EMCCD-камеры. В последних экспериментах самое длительное время, в течение которого новосибирские ученые наблюдали одиночный атом, 40 секунд.

"Нам пришлось разместить объектив оптического пинцета как можно дальше от облака холодных атомов, чтобы они не взаимодействовали со стеклом - диэлектрической поверхностью. Такой процесс может плохо сказаться на дальнейшем проведении двухкубитовых квантовых операций. Поэтому мы использовали длиннофокусный объектив, но в результате нам было сложнее регистрировать испускаемые атомом фотоны - их в объектив попадает меньше, когда он находится далеко от атома. К тому же одиночный атом светится слабо, поэтому все его излучение требовалось сфокусировать на один пиксель матрицы видеокамеры. Однако впоследствии выяснилось, что, если мы просто пытаемся зарегистрировать одиночный атом, то практически ничего не видим на фоне шумов видеокамеры, поскольку лазер пинцета выводит атомы из резонанса с подсвечивающим излучением. Для того, чтобы справиться с этой проблемой, мы выключали дипольную ловушку на очень короткое время - не более чем на одну миллионную секунды - за это время одиночный атом не успевает ее покинуть - и повторяли так в течение нескольких тысяч циклов, накапливая сигнал за время, когда дипольный лазер выключен", - добавляет Илья Бетеров.

По наблюдениям исследователя, работа новосибирского коллектива – первая, в которой реализовано одновременное использование длиннофокусного объектива и sCMOS-видеокамеры, и результат может быть интересен не только российским физикам.

"Зарубежные группы тоже бывают стеснены в средствах, и, если есть возможность купить видеокамеру существенно дешевле, которая показывает приемлемый для эксперимента результат, – это для всех важно", - отмечает Илья Бетеров.

Следующий шаг новосибирских ученых - научиться выполнять однокубитовые операции с высокой точностью и перейти к двухкубитовым. То есть, если говорить упрощенно, "готовить" из холодных атомов логические элементы квантового компьютера, меняя электронные состояния атома и управляя ими. Исследования поддержаны Российским научным фондом, а также Фондом перспективных исследований.

Напомним, что Институт физики полупроводников имени А. В. Ржанова СО РАН с 2018 года входит в состав научного консорциума, работа которого направлена на развитие квантовых технологий и, в частности, создание отечественного квантового компьютера. Консорциум создан на базе МГУ имени М. В. Ломоносова и включает ведущие вузы и НИИ, такие как Санкт-Петербургский госуниверситет, Московский государственный технический университет имени Н. Э. Баумана, Национальный исследовательский ядерный университет МИФИ, Институт физики твердого тела РАН, Физико-технологический институт имени К. А. Валиева РАН, Институт общей физики имени А. М. Прохорова РАН и другие., сообщили в пресс-службе ИФП СО РАН.



Cмотрите также:  Наука  Новосибирская область
Архив
пн вт ср чт пт сб вск
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 
Поиск по сайту
Что? Где? Когда?
**** *****

24-28 сентября 2020 года в Иркутске пройдет кинофестиваль "Человек и природа"

******

С 5 по 11 октября 2020 года в Иркутске пройдёт чемпионат мира по хоккею с мячом

******
Сохраним Байкал!

Экологический кризис на Байкале: новый эпизод с сине-зелеными водорослями
Все о клещах

Новосибирские ученые: как уберечься от заболеваний, переносимых клещами

Планета Земля

2036 год: Апофеоз или Апокалипсис?


Катастрофы: возможность или неизбежность
Реклама

Универсальная вебкамера за 1190 рублей, функция автоматической записи
*******
О проекте Контакты Партнеры  
Rambler's Top100
Copyright © 2004-2020 РИА "Сибирь"
E-mail: rian@cn.ru
Телефон: 8(383) 214-20-12