сегодня: 03.06.2023

[сделать стартовой]

Рубрики
Общество
Экономика
Политика
Спорт
Наука
Культура
Образование
Здравоохранение
Информационные технологии
Силовые структуры
Криминал
Происшествия
Экология
Недвижимость
Нск-риэлт
Байкал
Национальные проекты
Лес - богатство Сибири
Нефть и газ Сибири
Сибирский уголь
Научно-технический прогресс
Сибиряки
Мир вокруг нас
Интервью
Актуально

Сибирский федеральный округ
Наука и жизнь

Луна образовалась в результате ядерного взрыва


Видеокамеры для "супермена"


"Конец света" в прямом смысле слова


Земные океаны и атмосфера появились благодаря метеоритной бомбардировке


Солнце на Земле


Искусственный интеллект совсем рядом



ТОП-20 инженерных чудес света



Четвероногий друг


Новости Байкала

2021-02-26 12:13:00 /РИА "Сибирь" /Новосибирск

Новосибирские ученые-физики обнаружили эффект ограничения "жизни" плазменной волны





Специалисты Института ядерной физики имени Г. И. Будкера СО РАН, входящие в коллаборацию AWAKE (Advanced proton-driven plasma WaKefield Acceleration Experiment) Европейского центра ядерных исследований (ЦЕРН), обнаружили и исследовали эффект разрушения плазменной кильватерной волны при образовании электронного гало. Этот эффект ограничивает время жизни плазменной волны и влияет на выбор оптимальных условий для ускорения в ней частиц. Результаты опубликованы в журнале Plasma Physics and Controlled Fusion, а также были представлены на собрании коллаборации AWAKE и на конкурсе молодых ученых Института ядерной физики СО РАН.

Исследованное явление важно как для объяснения результатов эксперимента, так и для численного моделирования будущих плазменных ускорителей.

Кильватерное ускорение электронов в плазме - это метод ускорения частиц, идея которого возникла еще в 70-х годах прошлого века, а название появилось из-за аналогии со следом на поверхности воды, который остается позади идущего судна.

Первоначально в качестве драйвера, который создает в плазме волну, физики использовали пучок электронов или мощный лазерный импульс, но с 2009 года стали использовать для этого пучок протонов, который содержит в себе в тысячу раз больше энергии. В 2013 году в ЦЕРН начал работу эксперимент AWAKE, основная задача которого состоит в экспериментальном подтверждении самой возможности использования такого метода ускорения электронов. В 2018 г. ученым удалось ускорить пучок электронов в плазме при помощи протонного драйвера.

"Область исследования эксперимента AWAKE - ускорение частиц в плазме. Физики хотят научиться ускорять электроны до очень больших энергий, таких, какие бывают только у протонов, – рассказывает теоретический координатор проекта AWAKE, главный научный сотрудник Института ядерной физики СО РАН, профессор НГУ, доктор физико-математических наук Константин Лотов. - Самые быстрые электроны, когда-либо полученные человечеством, имели энергию 105 ГэВ, а плазменное кильватерное ускорение может увеличить ее раз в сто. Первые результаты эксперимента AWAKE уже получены - ученым удалось ускорить электроны с помощью волны, создаваемой сгустком протонов в плазме. В ближайшее время эволюционное развитие эксперимента будет заключаться в увеличении энергии электронов. Но в какой-то момент нужно будет продемонстрировать не только энергию, но и качество ускоренного пучка. Поэтому сейчас мы разбираемся с различными тонкими эффектами, чтобы полностью понять изучаемый процесс. В частности, сравниваем результаты того, что получено в эксперименте, с численным моделированием. Благодаря сравнению эксперимента и моделирования становятся видны эффекты, которые ранее были неизвестны и не учитывались".

Наблюдения за любыми процессами в плазме в эксперименте AWAKE усложняются тем, что внутрь секции, где находится ионизированный газ, нельзя поместить диагностические элементы - они будут влиять на плотность плазмы и нарушать ход эксперимента. Поэтому все диагностики устанавливаются на выходе из плазменной секции – таким образом ученые получают данные о происходящем внутри, например, информацию о профиле протонного пучка, который создал в плазме волну. Еще один способ разобраться в том, что происходит в плазме – численное моделирование. Численные коды, используемые теоретиками Института ядерной физики СО РАН, позволяют быстро анализировать большое число параметров.

"Сравнение численных кодов и экспериментальных данных в AWAKE проводилось уже много раз. Из этого сравнения можно было сделать вывод, что численное моделирование позволяет делать достаточно точные предположения о происходящем в эксперименте, - пояснил аспирант Института ядерной физики Роман Спицын. - При этом нередко возникает "дилемма": моделирование широкой области дает результат более приближенный к реальному эксперименту, но оно может оказаться долгим и очень ресурсоемким. Моделирование же небольшой области будет более быстрым и менее ресурсоемким, но тогда можно "потерять" часть физических эффектов, которые, впрочем, могут быть некритичными".

Специалисты Института ядерной физики сравнили экспериментальные данные поперечного профиля протонного пучка, пролетевшего плазменную секцию, с результатами численного моделирования этого эксперимента в случае узкой области (моделируя только плазму) и широкой области (охватывая еще и окружающий плазму не ионизованный газ, который не влияет на процесс кильватерного ускорения). Моделируя ситуацию в широкой области, ученые увидели эффект разрушения плазменной кильватерной волны электронным гало (областью отрицательного заряда, образующейся вокруг плазмы вылетевшими из нее электронами). В случае узкого окна этот эффект не проявлялся.

"При определенных параметрах эксперимента AWAKE часть электронов плазмы вылетает из нее, но потом снова притягивается образовавшимся в плазме избыточными положительным зарядом. Возвращаясь обратно, такие электроны пролетают плазменную волну, при этом ускоряясь или замедляясь, в зависимости от фазы волны, в которую они попадают. Ускоряясь, электроны забирают энергию из плазменной волны, а замедляясь, наоборот, возвращают. Таких электронов не так много, и поначалу считалось, что количество забираемой ими энергии при пролете сквозь плазму не так велико, чтобы это могло повлиять на образовавшуюся в плазме кильватерную волну, - добавил Роман Спицын. - Мы же при моделировании «увидели» эффект, который заметно сокращал время жизни кильватерной волны. Оказалось, что сама плазменная волна работает как линза, которая отклоняет траектории возвращающихся электронов, "заставляя" их падать в области наибольшего ускоряющего поля. В результате волна отдает свою энергию не тем "хорошим" электронам, которые мы хотим ускорить, а другим, случайно пролетевшим мимо".

По словам Романа Спицына, наблюдаемый эффект важен как для экспериментальных, так и теоретических работ в рамках AWAKE. "Он ограничивает время жизни плазменной кильватерной волны, а это критично для эксперимента. Кроме того, он важен и при численном моделировании, поскольку накладывает дополнительные ограничения на минимальную ширину области моделирования", - добавил специалист.

Результаты по обнаружению и изучению эффекта разрушения плазменной кильватерной волны при образовании электронного гало были представлены на собрании коллаборации AWAKE (ЦЕРН, дистанционно, 2020) и на конкурсе молодых ученых Института ядерной физики (Новосибирск, дистанционно, 2020), а также опубликованы в журнале Plasma Physics and Controlled Fusion, сообщила руководитель пресс-службы Института ядерной физики Алла Сковородина.



Cмотрите также:  Наука  Новосибирская область
Поиск по сайту
Сохраним Байкал!

Экологический кризис на Байкале: новый эпизод с сине-зелеными водорослями
Все о клещах

Новосибирские ученые: как уберечься от заболеваний, переносимых клещами

Планета Земля

2036 год: Апофеоз или Апокалипсис?


Катастрофы: возможность или неизбежность
О проекте Контакты Партнеры  
Rambler's Top100
Copyright © 2004-2021 РИА "Сибирь"
E-mail: rian@cn.ru
Телефон: 8(383) 214-20-12